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Abstract

The effect of nonlinear feedback control strategies on the planform of convection

in a Boussinesq fluid heated from below is investigated. In the absence of the

control, given that non-Boussinesq effects may be neglected, it is well known that

convection begins in the form of a supercritica] bifurcation to rolls. Non-Boussinesq

behaviour destroys the symmetry of the basic state, and through a subcritical

bifurcation leads to the formation of hexagonal cells. Here we discuss the influence

of regulation of the lower surface temperature by means of a control mechanism,

made up of a combination of a proportional linear and nonlinear controller, on the

stability of the hexagonal cell pattern.
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1 Introduction

Our concern is with the effects of feedback control on the evolution of convective insta-

bilities in a Boussinesq fluid heated from below. The stability of B_nard convection is of

both mathematical and physical importance, and is of particular relevance to material

processing applications, where it is often more desirable to operate at Rayleigh numbers

in excess of the critical value above which thermal convection normally occurs, but in the

absence of such convective instabilities.

Currently methods for suppressing convection include, damping fluid motion in elec-

trically conducting materials with magnetic fields, and also operating in a reduced gravity

environment in order to minimise the effects of buoyant convective currents.

It is well known, that for non-Boussinesq fluids, where variation of temperature with

viscosity is taken into account, the onset of convection in a steady fluid layer, heated

from below, takes the form of hexagonal cells with the flow direction at the cell centre

determined by the sign of the change in sign in viscosity variation. (See Segel & Stuart

(1962), Palm et al. (1967), Segel (1965), and Busse (1967).) This cell pattern is induced

by a subcritical bifurcation to convective rolls. Further increase in the Rayleigh number

cause a destabilisation of the hexagonal pattern, and roll modes are established. However,

if the Rayleigh number is subsequently decreased to a value below that at which the roll

modes first appeared, hysteresis effects are seen, that is, the hexagonal cells are not re-

established until a value below that at which transition to the roll mode first occurred.

This is a consequence of the subcritical bifurcation, and an additional consequence due

to the nature of this bifurcation is that the onset of convection occurs discontinuously

when the Rayleigh number is increased.

Considerable research has been done on stratagies to delay the onset of B_nard con-

vection in a fluid layer heated from below and/or cooled from above through modula-

tion of the boundary conditions and, in particular, the time-periodic modulation of the

temperature difference across the layer - see Davis (1976), and Donnelly (1990). Pre-

vious authors have found that this leads to a small increase in the critical Rayleigh

number (see Meyer, Cannell and ahlers (1992)). However, Roppo, Davis & Rosenblat

(1984), found that periodic modulation of the lower surface temperature induces symme-

try breaking effects sufficient to cause a subcritical bifurcation and thus the no-motion

state may only be stable for small perturbations.

Recently, Kelly and Hu (1993), showed that a time-periodic non-planar shear flow sig-

nificantly stabilises the Bfinard problem. In a subsequent paper Hall and Kelly (1995),

it was found that steady and unsteady shear flows removed the preference for hexagonal

cells at the onset of convection in a non-Boussinesq fluid. This was achieved by suffi-

ciently splitting apart the critical Rayleigh numbers for each member of a triad of roll

disturbances which interact to produce the hexagonal cells.

The mechanism found by Kelly and Hu (1993), is possibly explained by results for

convection in unidirectional steady flows, see the review by Kelly (1993), and this possi-



bility is summarised in Hall (1995). Kelly and Hu found that the maximum stabilising

effects were for low frequencies. For this reason, Hall (1995) concentrated on the low

frequency regime, and investigated the interactions between all possible roll disturbances

for a given value of the Rayleigh number. Note that for small amplit,de unsteady flows,

subcritical convection of any form is not possible, Hall and Kelly (1995), which is in con-

trast to the results of Roppo, Davis and Rosenblat (1984). Hall (1995), found that there

exists a threshold frequency, below which imperfections in the system play a crucial role,

causing the system to respond in a quasi-steady manor. The non-linear problem becomes

singular, in the sense that, the solution to the problem differs by an O(1) amount from

the imperfection free solution. However, even for frequencies small enough to induce

quasi-steady behaviour within the fluid layer, at any instant in time the convection cells

do not line up with the direction identified as most unstable on the basis of linear theory,

that is, the behaviour for such frequencies cannot be predicted from the corresponding

steady case. The convection patterns in this regime are found to change with time, and

are extremely complicated with straight rolls existing only for part of a period. It was also

found that the Kelly-Hu mechanism persists into the nonlinear regime until imperfections

start to play a role in the system. Thus practical application of such a stabilising method

must ensure that the frequency of the oscillations required for a full stabilising effect is

shorter than that over which imperfections have an effect on convection. In addition, the

necessary horizontal motions may also have an adverse effect in materials processing.

In various experimental and theoretical investigations, by Singer, Wang and Bau, (see

references), the bifurcation structure associated with convection has been successfully

changed by means of a feedback controller in a thermal convection loop, heated from

below and cooled from above. Thus the Rayleigh number above which convective motion

occurs was higher than that for the uncontrolled system. In addition, they also induced
chaotic behaviour for flows which would otherwise be laminar.

Tang and Bau (1993), implemented similar ideas when investigating the Lapwood

problem for a horizontal saturated porous layer, confined in a box heated from below,

and cooled from above. Lapwood convection is relevant to transport processes in the

mushy region of solidification, and also in thermal porous insulators. The convection in

such a medium, may be modelled for low to moderate Darcy-Rayleigh numbers by the

Darcy-Oberbeck-Boussinesq equations. They concluded that the no-motion state could

be maintained by means of feedback control strategies, for Rayleigh numbers exceeding

the critical values for the uncontrolled system. In addition, the control mechanism was

found to leave unaltered the no-motion solution of the classical equations, but changes

the stability characteristics by altering the system dynamics. The control mechanism

implemented was either of the proportional, or differential kind or a combination of the
two.

The problem under investigation here, concerns the effects of a nonlinear feedback

control mechanism, that is we modulate the lower surface thermal boundary conditions

with reference to the midlayer temperature with a combination of proportional and non-
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linear controllers, the latter being dependent on the square of the reference temperature.

The aim of this study is to determine firstly if subcritical convection can take place,

and investigate the stability when nonlinear effects are taken into account.

In the first instance, we shall derive a system of amplitude equations, which are

generalisations of those found by Segel (1965), for the problem under consideration. In

section 3, we will investigate the bifurcation structure of these equations. And finally, in
section 4 we shall draw some conclusions.

2 Formulation

Consider a fluid occupying the region 0 < z < d, and of infinite horizontal extent. The

fluid is Newtonian, and we apply the Boussinesq approximation. The wall z = 0 is

maintained at a temperature To + AT, with the upper wall at a temperature To. We

introduce non-dimensional variables, scaling length, time, velocity, pressure and temper-
1 1

ature according to d, d2n, (ag'nATdu-1) _ , (pgnaguATd-1) _ , and AT respectively. The

governing equations are then as follows,

0 "-1 (V t -[- R½V • VV)

V'V

T_ + R½v-VT

= V2v - Vp+ R½Tk:, (2.1a)

= 0, (2.1b)

= V2T, (2.1c)

where, cr = v/n, is the Prandtl number and R = agATd3/nu is the Rayleigh number. In

the above, subscripts denote partial differentiation, and the operator V 2 is defined as,

02 02 02
V 2

= Ox----7 + _ + Oz---7

The velocity, pressure and temperature fields are denoted by the quantities, v = (u, v, w),

P and T respectively, whilst k, represents the unit vector in the positive z direction. Also,

p0, u, n and a, are typical values for the density, kinematic viscosity, thermal diffusivity

and coefficient of thermal expansion respectively.

Before proceeding, we first describe the feedback control mechanism introduced by

Tang and Bau (1993). It consists of sensors placed at some horizontal cross-section, in

our case, the midlayer, and actuators on the lower surface, which react to any deviation of

the fluid temperature from the desired conductive values by modifying the temperature

distribution there, and thus, increasing the dissipation of these disturbances.

The no-motion state of the classical problem is a solution of the equations of motion

for all values of the Rayleigh number. However, as a result of imperfections within the

system, the temperature field may deviate from its conductive value, and thus buoyant

forces are produced, inducing fluid motion. Below the critical Rayleigh number for the

classical problem, thermal conduction is sufficient to dissipate these disturbances and
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hence,the no-motion state is restored. The controller introduced, may assist in this
dissipation, and thus the critical valueof the Rayleigh number maybe be increased.

We assume that the temperature distribution at z - ½, is known, or maybe calculated

to sufficient accuracy and is a continuous function of (x, y). In the no-motion state,

TZ_-0 _--- 0.

Given some deviation from the initial distribution, the actuators modify the lower surface

temperature according to,

Tz=o =/<pT +/<,_72 , (2.2)

where 7 -- T(z - ½) and Kp and /<_ are the gains of proportional and nonlinear con-

trollers respectively.

Once the disturbance has been dissipated, Tz=o again takes its initial value of zero. In

normal operating conditions, the controller reacts before the disturbance has a chance to

grow, and any deviation in the lower surface temperature will be small. Thus we make

the assumption that the control parameters, Kp and K,_ are small, and thus introduce,

Kp = KpS, /_,_ = K,_5,

where, 5 is a small parameter, and Kp, and K,_ are both O(1) quantities.

The walls at z - 0 and z = 1 are taken to be planar, stress-free surfaces, and con-

ditions of no slip and zero stress are imposed, together with the assumption that the

boundaries are isothermal. These conditions may be re-written in terms of the tempera-

ture variable as,

On z = 0,

T = Kp75 + K,(T25, (2.3a)

V2T = V4T = 0 (2.3b)

and on z = 1,
T = V2T = V4T = 0

Again, T, is defined as the temperature on the surface, z = !
2"

We note that boundary conditions for T are,

D2T = D4T = O, onz=0,1

(2.4)

R = Ro + i_R2 + .... (2.5)

together with suitable conditions on T at the upper and lower surfaces. However, due to

the control mechanism under investigation, these conditions depend on 5. In the above,

D denotes partial differentiation with respect to z.

We wish to concentrate on the nonlinear evolution of interacting modes, and we seek

solutions with R differing from its critical value by O(e2), where e is considered to be

small. We therefore expand R as,



Note that in the above, R0 and R2, are dependent on _, and in addition, we scale the

time dependence such that t = _2r, where r is an O(1) quantity.

Here, we wish to concentrate on the roll of feedback control on the pattern selec-

tion problem in the weakly nonlinear regime, and apply the results of previous authors

(see Segel and Stuart 1962, Segel 1965) for the slightly non-Boussinesq fluid to aid in

interpreting our results. The latter authors considered pattern selection involving rolls

and hexagons, and found that the problem reduces to the investigation of the non-linear

interactions of a triad of modes with wave-numbers,

, ,

_r (_ +v/3) (2.6b)(k ,ky) = ,75 '- '

(k,,,kv) -- (2.6c)
71"

(1,0) •

In the absence of the controller, we expand the temperature perturbation as,

T = 1 - z + _ sin _rz (XEI + YE2 + ZE3) + c.c. + ...,

where,

Ea = exp _ _ 9 ,

E2 = exp_ +--_-y ,

i_r

E3 = exp _x,

(2.7)

(2.8a)

(2.8b)

(2.8c)

and X, Y and Z, are functions of time only whilst c.c. denotes the complex conjugate.

If the non-Boussinesq effects are taken to be small, O(_), then the amplitude equations

for X, Y and Z, are of a similar form to those of Segel and Stuart 0962), where variation

of the fluid properties with temperature is taken into account. However, since we assume

that viscosity is constant, the quadratic term in these equations vanish. We leave the

discussion of this system of equations until the following section.

In order to determine the effects of feedback control upon pattern selection develop-

ment, we shall expand the temperature and velocity fields as follows,

T = Ts + _T1 + _2T2 +..., (2.9a)

v = _vl + _2v2 + .... (2.9b)

We now substitute the above into the governing equations (2.1a-c) and equating like

powers of i and then 5 we obtain a solution in the following manner.
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In the basic state, the fluid is at rest.

number Ro are expanded below,

TB

Ro =

where,

and

Similarly,

where

The temperature field, TB (z), and Rayleigh

TBo + *Tin + *2Tm + ...,

Roo + *Rol +...,

(2.10a)

(2.lOb)

TBo = 1 - z (2.11)

Tm= 3'1 (1 -- z), (2.12a)
--2

71 = KpTBO + K,_TBo. (2.12b)

TB2 = 72(1 - z), (2.13a)

72 = KpTm + 2K,_TBoTm. (2.13b)

At O(_), we again expand the temperature and velocity perturbations in powers of 6,

I'1 = Tlo + 6Tn +... (2.141)

vl = vlo+_Vu +... (2.14b)

The problem for Tlo reduces to,

- V6Tlo + RooV_Tlo = O,

0 2 02

+
with the boundary conditions:

/'1o(0)

Tlo (1)

The solution to the above maybe written as,

Tlo = ¢ sin _rz

where,

(2.15)

= D2Tlo(O)= D4Tlo(0)=0, (2.16a)

= D2Tlo(1)= D4Tlo(1)=0. (2.16b)

(2.17)

71*2

V_¢+ -_-¢ = 0, (2.181)

¢ = X(t)Ea + Y(t)E2 + Z(t)E3 + c.c., (2.18b)



where,El, E2 and Ea are as previously defined in (2.8a-c). In this way we find the critical

Rayleigh number , R0o to be equal to 27_r4/4.

Again at O(i2), we expand T2 and v2, as power series in _, as in (2.14a,b), and find

that the leading order problem for T20 and v20 has a solution given by,

T2o = _ L,_0),_ sin 2_rz,
m=0,4

w2o = __, Pm(bm sin 2_-z,
re=O,4

( 0)m,_)=
\ '020 / m=0,4

COS 27rz.

(2.19a)

(2.19b)

(2.19c)

In the above, Lm, Pm and Qm are constants, determined from the system of equations

governing this order and the subscripts, x and y denotes partial differentiation with

respect to the x and y co-ordinates respectively. The functions 0)m are given by,

0)0 : 2 (Ix ts + Iv Is + Iz IS), (2.20a)
0), = 2YZE1 + 2-XZEs + 2XYE3 + c.c, (2.20b)

0)I,2 = O, (2.20c)

0)3 = 2XYE1E2 + 2XZE1E3 + 2YZE2E3 + c.c, (2.20d)

0)4 = s 2 YSE_ + Z2E_ + c.c,X E 1 + (2.20e)

and thus,
7r 2

V_r_ = --m--0)m.
2

We note that this solution satisfies homogeneous boundary conditions on the temperature

at the lower surface.

At 0(_6), we find that Tla satisfies,

-V*T_, + RooV_T_ = - (RooT_ + Ro_) V_T,o,

rll(0) = (Kp + gn)(_,

Tn(1) = VST_a(0)= V2T_I(1) = V4T, a(0)= V4T_(1)=0,

(2.21a)

(2.21b)

(2.20d)

with solution,

T. = ¢_(z),
_'(z) = AT(z--1)cos_rz + _ BjexpAjz,

j=l,4

(2.21a)

(2.21b)

where AT is a constant given by,

AT =
Roo71 + Rol

27_r3
(2.22)



and Aj are roots to the equation,

A_- + RooT = o,

other than +hr. Values for AT, and Bj in (2.21a) are found from the boundary conditions,

which reduce to solving a matrix equation of the form,

Px - (Kp + K_)Q. (2.23)

Hence, from (2.22), a value for R01 may also be determined.

Since we wish to consider the evolution of the amplitudes, X, Y and Z, at O(_3), and

include nonlinear effects from both the controller and terms in the governing equations,

we require that _ and 6 are of comparable orders of magnitude. Thus, we shall combine

the solutions to the problems at O(_3), 0(_26) and O(_52). In other words we now set

_=5.

At this order, the solvability condition required for a solution of the differential system

to exist yields the following equations for the amplitudes X, Y and Z,

EX = (e+a) X-aYZ-X(R,[X[2+PIYI2+PIZ[ 2) (2.24a)

EY = (e + a) Y - a-XZ - Y (R1 IV[ 2 +P [ X ]2 +P ] Z [2) (2.24b)

EZ = (e+a) Z-aXV-Z(nx IZ[2 +PIX [2 +p[y[2) (2.24c)

In the above, a and a are functions of the control parameters Kp and K_ and given

by,

(AT _ ,., e_,+ 1) (2.25a)t_ = 7r2 (71Roo + P_I) 4_- DJlr A_ q- 7r 2
j=1,4

7/.2 07['5 (Kp_'lll (_)'JF Kn (Tll (1)"Jf" "_'1))_- (-_,_ + 72_o) + -T+

a = 9--_- -rAT+ E -A_ B.i 2 r2
j----l,4 Aj "Jr-

+ 2R_0 -37r2T(0) 16/_o 3_r + _=,,4y_ Bj )b2 + _r2

- 9_rSK,_.

We note that from, (2.23), the constants, AT, and Bj, are proportional to Kp + K,_. From

this, and the above expression for a, we obtain the following, simplified expression for

the dependence of a on the control parameters, Kp and K_,

a = a, (Kp + K,_) + a2K,_, (2.26)



where al and a2 are constants.

In addition,

and,

and R1 and P are constants.

E:--9_r4 (1+1)'4

7r 2

_= -5-(R2o+ R,, + _2).

3

We seek steady solutions of (2.24a-c) with,

X =

Y =

Z =

Solution of the amplitude equation

x0 (3.1a)

Yo (3.1b)

z0. (3.1c)

In the above, Xo, Y0 and zo, are constants satisfying the following system of equations,

o = (_+a)xo-ag_zo-xo(Rllxol2+Ptyol2+Plzol 2) (3.2a)

0 = (e+a)yo-a-2-5ozo-Yo(Rllyo]2+P]xo]2+P[zo[ 2) (3.2b)

0 : (_ + OL)Z 0 -- axoy 0 -- z 0 (nl ]zo [2 +p [ Xo [2 +p ]Yo 12) (3.2c)

With the control switched off, K v = K,_ = O, we note that a and a are both zero, and

from Segel and Stuart (1962), and Segel (1965), possible equilibrium solutions are,

I Conduction : xo = yo = Zo = O, (3.3a)
1

.
IIIa,b Hexagons • Xo = yo = Zo, Zo = =]=(2T) -1 v/'_, (3.3c)

IVa,b Hexagons : Xo = Yo = -Zo, Zo = :$=(2T)-' _, (a.3d)

VMixed : zo=0, xo=yo==t:v_e, (3.3e)

where Q = P - R1,4R = P + R1 and T = P + 4R.

The stability of the different solutions may be found by an examination of the lin-

ear growth rates of small perturbations to Xo, yo and Zo as discussed in appendix 4 of

Segel (1965). The equilibrium forms for Zo given by (3.3a,e), are shown in figure 1, with

the Prandtl number set to unity. Unstable solutions are represented by dashed curves.
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Figure 1: Equilibrium forms for z0, given by (3.3a,e)

We now go on to describe how the bifurcation picture is modified by the effects of

feedback control on the system. We first write down the equilibrium solutions satisfied

by the controlled problem,

I Conduction •

IIa,b Rolls :

IIIa,b Hexagons •

IVa,b Hexagons :

V Mixed •

Zo = Yo = Zo = 0, (3.4a)
1

(_+_
xo=yo=0, zo=+k---R_ ] ' (3.4b)

•o=_o--zo,zo=_1-'(-o• _/o.+4_I_+o1_,,1_4_
Xo = Yo = -Zo, Zo = (2T)-' (-a :F Va :_+ 4T (e + _)), (3.4d)

1

-° ( _-_)_zo=--Q-,xo=yo=+R½ c+oL Q= ] , (3.4e)
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where Q, P, R1, R and T are as previously defined.

Clearly, for solutions of types II-V to exist, e must be greater than some threshold

value given by,

a 2

III, IV • e=B1- 4T a, (3.5a)

II : c = B2 = -a, (3.5b)

R 1 a 2

V : e=A1- Q2 a. (3.5c)

In addition, it can be shown by a linear stability analysis, that the hexagonal cell pattern

loses stability at,

R1 a2

= A2- Q2 a. (3.6)

The first point to note is that a subcritical bifurcation to the hexagonal cell pattern
remains viable. This is due to the fact that all three modes will have the same critical

values of c, corresponding to linear instability, since the control mechanism has no pre-

ferred direction, unlike say the shear flow mechanisms discussed by Hall and Kelly, where

the effect of the shear is felt only by modes not aligned parallel to the shear.

We now go on to examine the case where only the proportional controller, /iv, is in

operation, and see how the bifurcation diagram changes.

Figure 2 illustrates how the bifurcation picture is modified for Kp = ±0.02. Again,

the stability of the solutions can be found by an examination of a linearised analysis of

the growth rates of small perturbations to the equilibrium solutions. For Kp < 0, the

parameter a in equations (3.4a-c) is positive and from Segel and Stuart 11962_ we deduce

that the zero amplitude solution, I, loses stability at e = a corresponding to B2, so that a

hexagonal pattern corresponding to either IIIa or IVa will be generated as e is increased

further. This mode however is destabilised at A2.

This loss in stability is due to the effects of the mixed mode V, which is unstable for

all values of e, and originates as a bifurcation from the roll mode IIb at A1. Beyond A1,

IIb becomes stable, and thus as the Rayleigh number is further increased, the hexagonal

cells are replaced by the rolls corresponding to this solution. If the Rayleigh number is

subsequently decreased, hysteresis can occur with the roll pattern persisting until A1 at

which point the hexagonal cells are re-established.

For Kp > 0, a similar scenario occurs. However, the parameter a is, in this case

negative and thus instead of hexagonal cells corresponding to the equilibrium solutions

IIIa or IVa being established at B2, the cell patterns IIIb or IVb are initially generated.

In addition the mixed mode bifurcates from rolls of type IIa, and it is this mode which

becomes the stable solution beyond A1, with the roll pattern established at A2.

In addition, it should be noted that the roll mode solutions cannot exist until e -- -a,

and for all values of Kp, a is positive. This implies that the initial destabilisation of the
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conduction mode, I, and transition to the hexagonal cells, occurs for values of e in excess

of e = 0, the critical value of the uncontrolled problem. However, the hexagonal type

solutions III, and IV, become viable solutions for e < 0 for all Kp ¢ 0, and thus if the

Rayleigh number were decreased, hysteresis effects occur for subcritical values of e, that

is, the closed cell pattern persists for negative values of this parameter. Figures 4 and 5

describe how the location of the points B1, B2 and A1, A2, vary with Kp and illustrates

the points discussed above.

The stability of the various modes for Kp > 0 and K, < 0 are outlined below.

K_<0 Kp>0

I Stable until e > -a Stable until e > -o_

IIa Unstable for all e Stable for e > A1

IIb Stable for c > A1 Unstable for all e

B1 < e < A2Ilia, IVa

IIIb, IVb

Stable for

Unstable for all e

Unstable for all

Stable for

V Unstable for all e Unstable for all e

B1 < e < A2

Figure 3, shows how the bifurcation picture develops for larger values of ] Kp [. As this

parameter is increase, B1 _ -co and B2 ---* +co, and thus the no-motion state remains

stable for longer. In addition, subsequent destabilisation of the hexagonal pattern is also

delayed, that us, the range of e over which solutions III or IV are stable increases with

K..
We next consider the effects of the nonlinear controller on the bifurcation diagram,

with the proportional controller, Kp, set to zero.

In figure 6, we show the bifurcation diagrams for small values of the nonlinear con-

troller, K,_ = +0.02. As in the previous case, stability of the various solutions depends on

the sign of a in equations (3.4a). For, K,, > 0, a is negative and vice versa. Thus the sta-

ble/unstable modes are as previously discussed and outlined in Segel (1965). Again, after

the loss of stability of the conduction mode I, an hexagonal cell pattern corresponding to

either solution III or IV, is initially established. Due to the mixed mode V, these modes

loses stability at A2, and transition to the stable roll pattern II occurs as e is increased.

If the Rayleigh number is then decreased hysteresis occurs, with the hexagonal mode not

being re-established until A1.

One important feature to be considered in this case is that both the roll and hexagonal

modes become viable solutions for e < 0. Thus the initial transition from the no-motion

state to the closed cells of solutions III and IV, occurs as a subcritical bifurcation. In

figure 8 where we plot B1 and B2, the thresholds above which solutions III,IV and II

may exist respectively, against K,_. As can be seen for all Kn, these threshold values are

negative, and thus transition from the no-motion state occurs for subcritical values of

e. In addition, we see from figure 9, that A1 and A2, the positions where the roll mode

12



becomes stable and destabilisation of the hexagonal cells occur respectively, occur for

positive e.

Finally let us look at the case where both controllers are in operation. Figure 10,

illustrates the change in behaviour of the points B1 and B2, which represent the values

of e above which solutions III, IV and II exist respectively. We recall that for K,_ = 0,

for all Kp, B1 < 0 and B2 > 0, and for Kp = 0, for any value of Kn, B1, B2 were both

negative. An important feature shown in figure 10 is that this behaviour can be modified

such that there now exists a range of values of Kp for a given K,_, for which B1 > 0,

that is to say the hexagonal cell pattern is not a viable solution until above _ = 0, the

critical value of the uncontrolled problem. In this case K,_ was varied between 0.0, and

0.2 . Negative values of this parameter give similar plots, reflected in the line Kp = 0.0.

In addition, by careful choice of K_ for a given Kn, it is possible to create scenarios

with,

B1 <0, B2 < O, B1 <0, B2 > O, B1 >0, B2 > O.

Since B1 _< B2 for all Kp, K,_, it is not possible to generate the case where, B1 > 0, B2 <

0.

The bifurcation diagrams for these different cases are shown in figure 11. Here, solid

lines represent stable solutions to the problem, whilst the dashed lines are unstable. In

addition, we note that for the values in the parameters considered, except for certain

cases, the solution corresponding to the mixed mode does not show up in these diagrams.

This is due to the fact that the bifurcation from which this mode originates occurs for

large values of e, out of the range illustrated here. However, behaviour will be similar

to that discussed above, with the mixed mode originating as a bifurcation from the roll

modes, at e = A1. Above this value, the roll mode solution will be stable, and the

hexagonal cell structure will subsequently be destabilised due to interaction with the

mixed modes, at A2. For larger e, either IIa or IIb provides a stable equilibrium solution

to the equations of motion.

For Kp = -0.55, K,_ = +0.05, we see that the hexagonal cell pattern becomes viable

for e < B1 < 0, whilst the roll modes cannot occur until e > B2 > 0. This is due to the

fact that the linear controller dominates over the nonlinear controller K,_, and thus we

see behaviour typical of the K,_ = 0, Kp ¢ 0 discussed previously.

As Kp is increased B1 moves through the origin, and solutions III and IV occur

for positive value of e, whilst B2, moves towards e = 0. This behaviour is due to the

relative dependence of the parameters a and a on Kp and K,_. For this parameter range,

some cancellation of the effects of each controller on a and a is occurring leading to

supercritical behaviour, that is to say that the destabilisation of the no-motion state I,

occurs for values of e in excess of the critical value of the uncontrolled problem. These

points eventually coalesce and this case, being of some interest, is discussed later.

For further increases in Kp, B1 again becomes negative and, for even larger Kp the

roll solutions II also become viable for e < 0, and thus the initial bifurcation form

the conductive state to the hexagonal cell pattern is subcritical in nature. Within this

13



parameterrange, the nonlinear controller dominatesthe regulation of the lower surface
temperature. B2 again becomes positive for larger values of Kv, with B1 remaining

negative in value. Here the relative effects of the controllers are such that the linear

controller again dominates•

The stability characteristics for each of these cases are as previously discussed. The

no-motion state loses stability at _ = -a, corresponding to point B2, and the hexagonal

cell pattern, forms as the stable solution. Due to the influence of the mixed mode V,

which results as a bifurcation from the roll modes, this pattern is then destabilised at

A2, and rolls are formed. Subsequent decreases in the Rayleigh number lead to hysteresis

effects, with the roll modes persisting until A1, at which point the hexagonal cells are
re-established•

As mentioned previously, points B1 and B2 can coalesce. From the form of the

equilibrium solutions given in (3.4a-e), we can see that this occurs when a = 0. Due to

the dependence of a on Kp and K_, given by, (2.26), a relationship between the control

parameters maybe written down,

Kp = al "4- a2 K,_, (3.7)
al

where al and a2 are constants. In addition at this point, the equilibrium solutions reduce

to,

I Conduction

IIa,b Rolls

IIIa,b Hexagons

IVa,b Hexagons

V Mixed

: zo = yo = zo = 0, (3.8a)
1

: x0=Y0=0, z0=4-\--_l ,/ , (3.8b)

: Xo--yo=zo, zo=_(2T)-l¢4(e+a)T, (3.8c)

• xo=yo=-Zo, Zo=_(2T) -1 ¢4(e+a)T, (3.8d)

: zo= 0,xo= yo= + 4). (3.8e)

A typical bifurcation diagram for Kn and Kp satisfying (3.7), is shown in figure 12.

Here, solutions corresponding to IIa,b are shown as dotted lines, whilst the hexagonal

cell patterns IIIa,b and IVa,b are solid. As can be seen, the picture is very similar to that

for the equilibrium solutions for z0 with no control, (figure 1), except that the bifurcation

from the no-motion state occurs for e = -4. The roll and hexagonal modes become

possible solutions to the equations of motion at this point, as indeed does the mixed

mode, which corresponds to a solution with no-motion in the z-direction. Beyond e = a,

the conduction mode, loses stability, and the hexagonal cell pattern is formed• Since the

mixed mode V originates as a bifurcation from the roll solutions II at the same point,

e = 4, and no interaction between this mode and modes III or IV is possible, there can

be no subsequent transition from the hexagonal cells to rolls. In addition, if the Rayleigh

number were decreased from above e = -a, no hysteresis effects are seen.
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4 Further comments and conclusions

We have given a description of the process by which a control strategy maybe used to

delay or indeed speed up the onset of convection in a Boussinesq fluid. The amplitude

equations derived describe the effects of both linear and nonlinear proportional controllers

on the flow regime.

Since the controller has no preferred direction, a subcritical bifurcation to the hexag-

onal cell pattern remains viable. We considered three cases in detail. Firstly, with only

the linear controller in operation, we found that the onset of convective instabilities was

delayed, and that the hexagonal cell pattern persists for longer as the control parameter

Kp is increased. If the linear controller is switched off, and thus the lower surface tem-

perature is only regulated by the nonlinear controller, the transition from the no-motion

state to a hexagonal cell pattern occurs for subcritical values of the Rayleigh number.

The most interesting case was with both controllers in operation. Here, a range of dif-

ferent behaviours is possible. In particular the exists a parameter range for which the

hexagonal cell patterns do not become viable solutions to the model for values of e greater

than zero. Thus, not only is the onset of convection delayed significantly, but hysteresis

effects would lead to the re-establishment of the no-motion state for values of e in excess

of the critical value for the uncontrolled problem. In addition, for a given value of the

parameter Kn, we have shown that there exists a Kp such that the onset of convection is

supercritical, and the solutions corresponding to the roll, hexagonal and mixed modes all

bifurcate from the same point, thus the hexagonal cell pattern remains the stable solution

for Rayleigh numbers in excess of this point.

To conclude, careful choice of the various parameters involved, can either delay the

onset of convection, or produce transition for subcritical values of the Rayleigh number.
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